Dysregulation of intracellular redox homeostasis by the SARS-CoV-2 ORF6 protein | Virology Journal

  • Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;2020(395):565–74.

    Article 

    Google Scholar
     

  • Naqvi AAT, Fatima K, Mohammad T, Fatima U, Singh IK, Singh A, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165878.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu CR, Yin WC, Jiang Y, Xu HE. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacol Sin. 2022;43:3021–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes EC, Goldstein SA, Rasmussen AL, Robertson DL, Crits-Christoph A, Wertheim JO, et al. The origins of SARS-CoV-2: a critical review. Cell. 2021;184:4848–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. 2020. Director-General’s opening remarks at the media briefing on COVID19.

  • Mannar D, Saville JW, Sun Z, Zhu X, Marti MM, Srivastava SS, et al. SARS-CoV-2 variants of concern: spike protein mutational analysis and epitope for broad neutralization. Nat Commun. 2022;13:4696.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohapatra RK, Sarangi AK, Kandi V, Azam M, Tiwari R, Dhama K. Omicron (B.1.1.529 variant of SARS-CoV-2); an emerging threat: Current global scenario. J Med Virol. 2022;94:1780–3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Statement-on-the-update-of-who-s-working-definitions-and-tracking-system-for-sars-cov-2-variants-of-concern-and-variants-of-interest. 2022. https://www.who.int/news/item/16-03-2023

  • Varghese R, Kumar D, Sharma R. Global threat from novel SARS-CoV-2 variants, BF.7, XBB.1.5, BQ.1, and BQ.1.1: variants of concern? Hum Cell. 2023;36:1218–21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mautner L, Hoyos M, Dangel A, Berger C, Ehrhardt A, Baiker A. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virol J. 2022;19:76.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gori Savellini G, Anichini G, Cusi MG. SARS-CoV-2 omicron sub-lineages differentially modulate interferon response in human lung epithelial cells. Virus Res. 2023;332:199134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Telenti A, Hodcroft EB, Robertson DL. The Evolution and Biology of SARS-CoV-2 Variants. Cold Spring Harbor Perspect Med. 2022;12:a041390.

    Article 

    Google Scholar
     

  • Xia S, Wang L, Zhu Y, Lu L, Jiang S. Origin, virological features, immune evasion and intervention of SARS-CoV-2 Omicron sublineages. Signal Transduct Target Ther. 2022;7:241.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papanikolaou V, Chrysovergis A, Ragos V, Tsiambas E, Katsinis S, Manoli A, et al. From delta to Omicron: S1-RBD/S2 mutation/deletion equilibrium in SARS-CoV-2 defined variants. Gene. 2022;814:146134.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baggen J, Vanstreels E, Jansen S, Daelemans D. Cellular host factors for SARS-CoV-2 infection. Nat Microbiol. 2021;6:1219–32.

    Article 
    PubMed 

    Google Scholar
     

  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced Host Response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036-1045.e9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya D, Liu G, Gack MU. Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol. 2020;20:397–8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369:718–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oh SJ, Shin OS. SARS-CoV-2 nucleocapsid protein targets RIG-I-like receptor pathways to inhibit the induction of interferon response. Cells. 2021;10:530.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gori Savellini G, Anichini G, Gandolfo C, Cusi MG. SARS-CoV-2 N Protein Targets TRIM25-Mediated RIG-I Activation to Suppress Innate Immunity. Viruses. 2021;13:1439.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He L, He T, Farrar S, Ji L, Liu T, Ma X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol Biochem. 2017;44:532–53.

    Article 
    PubMed 

    Google Scholar
     

  • Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47–95.

    Article 
    PubMed 

    Google Scholar
     

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.

    Article 
    PubMed 

    Google Scholar
     

  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother. 2007;74:101–10.

    Article 

    Google Scholar
     

  • Fraternale A, Zara C, De Angelis M, Nencioni L, Palamara AT, Retini M, et al. Intracellular redox-modulated pathways as targets for effective approaches in the treatment of viral infection. Int J Mol Sci. 2021;22:3603.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses. 2018;10:392.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hosakote YM, Liu T, Castro SM, Garofalo RP, Casola A. Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol. 2009;41:348–57.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Komaravelli N, Tian B, Ivanciuc T, Mautemps N, Brasier AR, Garofalo RP, et al. Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2. Free Radic Biol Med. 2015;88:391–403.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sorrentino L, Toscanelli W, Fracella M, De Angelis M, Frasca F, Scagnolari C, et al. NRF2 antioxidant response and interferon-stimulated genes are differentially expressed in respiratory-syncytial-virus- and rhinovirus-infected hospitalized children. Pathogens. 2023;12:577.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Angelis M, Amatore D, Checconi P, Zevini A, Fraternale A, Magnani M, et al. Influenza virus down-modulates G6PD expression and activity to induce oxidative stress and promote its replication. Front Cell Infect Microbiol. 2022;11:804976.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polonikov A. Endogenous deficiency of glutathione as the most likely cause of serious manifestations and death in COVID-19 patients. ACS Infect Dis. 2020;6:1558–62.

    Article 
    PubMed 

    Google Scholar
     

  • Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020;77:100741.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartolini D, Stabile AM, Bastianelli S, Giustarini D, Pierucci S, Busti C, et al. SARS-CoV2 infection impairs the metabolism and redox function of cellular glutathione. Redox Biol. 2021;45:102041.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun. 2020;11:4938.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu Y, de Mello AH, Morris DR, Jones-Hall YL, Ivanciuc T, Sattler RA, et al. SARS-CoV-2 inhibits NRF2-mediated antioxidant responses in airway epithelial cells and in the lung of a murine model of infection. Microbiol Spectr. 2023;6:e0037823.

    Article 

    Google Scholar
     

  • Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, et al. Can activation of NRF2 be a strategy against COVID-19? Trends Pharmacol Sci. 2020;41:598–610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herengt A, Thyrsted J, Holm CK. NRF2 in viral infection. Antioxidants (Basel). 2021;10:1491.

    Article 
    PubMed 

    Google Scholar
     

  • Mastrantonio R, Cervelli M, Pietropaoli S, Mariottini P, Colasanti M, Persichini T. HIV-Tat induces the Nrf2/ARE pathway through NMDA receptor-elicited spermine oxidase activation in human neuroblastoma cells. PLoS ONE. 2016;11:e0149802.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi Y, Jiang Z, Shin WJ, Jung JU. Severe fever with thrombocytopenia syndrome virus nss interacts with TRIM21 to activate the p62-Keap1-Nrf2 pathway. J Virol. 2020;94:e01684-e1719.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuzmenko YV, Smirnova OA, Ivanov AV, Starodubova ES, Karpov VL. Nonstructural protein 1 of tick-borne encephalitis virus induces oxidative stress and activates antioxidant defense by the Nrf2/ARE pathway. Intervirology. 2016;59:111–7.

    Article 
    PubMed 

    Google Scholar
     

  • Amatore D, Sgarbanti R, Aquilano K, Baldelli S, Limongi D, Civitelli L, et al. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS. Cell Microbiol. 2015;17:131–45. https://doi.org/10.1111/cmi.12343.

    Article 
    PubMed 

    Google Scholar
     

  • Nencioni L, Iuvara A, Aquilano K, Ciriolo MR, Cozzolino F, Rotilio G, et al. Influenza A virus replication is dependent on an antioxidant pathway that involves GSH and Bcl-2. FASEB J. 2003;17:758–60.

    Article 
    PubMed 

    Google Scholar
     

  • Nencioni L, De Chiara G, Sgarbanti R, Amatore D, Aquilano K, Marcocci ME, et al. Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus: impact on virally induced apoptosis and viral replication. J Biol Chem. 2009;284:16004–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derouiche S. Oxidative stress associated with SARS-Cov-2 (COVID-19) increases the severity of the lung disease-a systematic review. J Infect Dis Epidemiol. 2020;6:121.


    Google Scholar
     

  • Laforge M, Elbim C, Frère C, Hémadi M, Massaad C, Nuss P, et al. Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20:515–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter M, Chen IP, Vallejo-Gracia A, Kim IJ, Bielska O, Lam VL, et al. SIRT5 is a proviral factor that interacts with SARS-CoV-2 Nsp14 protein. BioRxiv. 2022;5:2022.01.04.474979.


    Google Scholar
     

  • Zhang S, Wang J, Wang L, Aliyari S, Cheng G. SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Cell Mol Immunol. 2022;19:872–82.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, et al. Nrf2 negatively regulates type i interferon responses and increases susceptibility to herpes genital infection in mice. Front Immunol. 2019;10:2101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olagnier D, Brandtoft AM, Gunderstofte C, Villadsen NL, Krapp C, Thielke AL, et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat Commun. 2018;9:3506.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gori Savellini G, Anichini G, Gandolfo C, Cusi MG. Nucleopore traffic is hindered by SARS-CoV-2 ORF6 protein to efficiently suppress IFN-β and IL-6 secretion. Viruses. 2022;14:1273.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci USA. 2020;117:28344–54.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, et al. Dysfunctional KEAP1-Nrf2 Interaction in Non-Small-Cell Lung Cancer. PLoS Med. 2006;3:e420.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu T, Lv YF, Zhao JL, You QD, Jiang ZY. Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications. Free Radic Biol Med. 2021;168:129–41.

    Article 
    PubMed 

    Google Scholar
     

  • Salazar M, Rojo AI, Velasco D, de Sagarra RM, Cuadrado A. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem. 2006;281:14841–51.

    Article 
    PubMed 

    Google Scholar
     

  • Reichard JF, Motz GT, Puga A. Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1. Nucleic Acids Res. 2007;35:7074–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol. 2011;31:1121–33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan X, Xu C, Pan Z, Keum YS, Kim JH, Shen G, et al. Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells. Mol Carcinog. 2006;45:841–50.

    Article 
    PubMed 

    Google Scholar
     

  • Ma L, Liu J, Zhang X, Qi J, Yu W, Gu Y. p38 MAPK-dependent Nrf2 induction enhances the resistance of glioma cells against TMZ. Med Oncol. 2015;32:69.

    Article 
    PubMed 

    Google Scholar
     

  • Naidu S, Vijayan V, Santoso S, Kietzmann T, Immenschuh S. Inhibition and genetic deficiency of p38 MAPK up-regulates heme oxygenase-1 gene expression via Nrf2. J Immunol. 2009;182:7048–57.

    Article 
    PubMed 

    Google Scholar
     

  • Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–49.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19:181–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Addetia A, Lieberman NAP, Phung Q, Hsiang TY, Xie H, Roychoudhury P, et al. SARS-CoV-2 ORF6 disrupts bidirectional nucleocytoplasmic transport through interactions with Rae1 and Nup98. mBio. 2021;12:e00065-21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min YQ, Huang M, Sun X, Deng F, Wang H, Ning YJ. Immune evasion of SARS-CoV-2 from interferon antiviral system. Comput Struct Biotechnol J. 2021;19:4217–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdalla AE, Xie J, Junaid K, Younas S, Elsaman T, Abosalif KOA, et al. Insight into the emerging role of SARS-CoV-2 nonstructural and accessory proteins in modulation of multiple mechanisms of host innate defense. Bosn J Basic Med Sci. 2020;21:515–27.


    Google Scholar
     

  • Hossain A, Akter S, Rashid AA, Khair S, Alam A. Unique mutations in SARS-CoV-2 Omicron subvariants’ non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microb Pathog. 2022;170:105699.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020;9:1418–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwarz KB. Oxidative stress during viral infection: a review. Free Radic Biol Med. 1996;21:641–9.

    Article 
    PubMed 

    Google Scholar
     

  • Jaiswal AK. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 2004;36:1199–207.

    Article 
    PubMed 

    Google Scholar
     

  • Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004;279:8919–29.

    Article 
    PubMed 

    Google Scholar
     

  • Yu R, Lei W, Mandlekar S, Weber MJ, Der CJ, Wu J, et al. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem. 1999;274:27545–52.

    Article 
    PubMed 

    Google Scholar
     

  • Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res. 2020;1867:118664.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain AK, Jaiswal AK. GSK-3β acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem. 2007;282:16502–10.

    Article 
    PubMed 

    Google Scholar
     

  • McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ. Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med. 2007;19:165–72.

    PubMed 

    Google Scholar
     

  • Rojo AI, Medina-Campos ON, Rada P, Zúñiga-Toalá A, López-Gazcón A, Espada S, et al. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: role of glycogen synthase kinase-3. Free Radic Biol Med. 2012;52:473–87.

    Article 
    PubMed 

    Google Scholar
     

  • Steinberg SF. Mechanisms for redox-regulation of protein kinase C. Front Pharm. 2012;6:128.


    Google Scholar
     

  • Bloom DA, Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem. 2003;278:44675–82.

    Article 
    PubMed 

    Google Scholar
     

  • McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal. 2006;8:1775–89.

    Article 
    PubMed 

    Google Scholar
     

  • Keum YS, Yu S, Chang PP, Yuan X, Kim JH, Xu C, et al. Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res. 2006;66:8804–13.

    Article 
    PubMed 

    Google Scholar
     

  • Grimes JM, Grimes KV. p38 MAPK inhibition: a promising therapeutic approach for COVID-19. J Mol Cell Cardiol. 2020;144:63–5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002;277:42769–74.

    Article 
    PubMed 

    Google Scholar
     

  • Mihaylova VT, Kong Y, Fedorova O, Sharma L, Dela Cruz CS, Pyle AM, et al. Regional differences in airway epithelial cells reveal tradeoff between defense against oxidative stress and defense against rhinovirus. Cell Rep. 2018;24:3000–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Post Dysregulation of intracellular redox homeostasis by the SARS-CoV-2 ORF6 protein | Virology Journal Originally Posted on virologyj.biomedcentral.com

    Leave a Comment

    Scroll to Top